
VOLUME 6 | ISSUE 3

2

H  RJ

SUBMISSION: 17/02/2021 - ACCEPTANCE: 16/06/2021

X-ray radiation affects the protection 
filter of yellow-tinted acrylic hydrophobic 
intraocular lenses against harmful UV-A 

and blue light

Ellas Spyratou1, Ioannis Antonakos1, Georgios Kareliotis2,  
Constantinos Bacharis2 and Efstathios Efstathopoulos1

12nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 12462, Athens, Greece.
2Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 

Zografou Campus, 15780 Athens, Greece

Abstract

Purpose: This study aims to investigate whether x-ray 
irradiation at doses delivered to the eye in plain radiog-
raphy, CT and fluoroscopically guided procedures can 
affect the optical properties of yellow-tinted intraocu-
lar lenses (IOLs) implants in the near-Ultraviolet (UV-
A) and visible (VIS) region. 
Material and Methods: 5 yellow azodye doped IOL 
of different models and diopters were irradiated with 
x-rays ranging from 1.1 to 22.6 mGy. The transmission 
spectra of each IOL were recorded pre-irradiation and 
post-irradiation by using a light source for IOL illumi-
nation, a spectraflect-coated integration sphere for the 

spectrum collection and a UV/VIS spectrometer for the 
spectrum record. 
Results: According to the recorded spectra, the trans-
mittance of all the yellow-tinted IOLs increases system-
atically in the UV-A and blue light region as the irradi-
ation dose increases. A linear dependence is recorded 
between the percentage increase of the transmittance 
and the increase in the irradiation dose at 380 nm. 
Conclusions: Our findings determine that x-ray radia-
tion affects significantly the filter of yellow-tinted IOLs 
for retina protection towards the natural exposure to 
the UV-A and short wavelength blue light. 
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Introduction
Human prosthetic lenses replacements are the most 
efficient technique to restore vision after cataract or 
in cases of high levels myopia or hyperopia. However, 
postoperative complications such as capsular opacifi-
cation, considerable cloudiness or discoloration may 
appear 2-3 years after the surgery. The factors affect-
ing the postoperative “life” of the intraocular lens (IOL) 
have not yet been fully clarified. It has been reported 
that the IOL’s material [1, 2], the fabrication method 
of the IOL e.g. by injection moulding or lathe-cut [3], 
the eye exposure to UV light [4] have been correlated 
with postoperative complications. In modern cataract 
surgery the rigid IOLs made of conventional polymeric 
materials, such as Poly (methyl methacrylate) (PMMA), 
are replaced by foldable IOLs fabricated by flexible ma-
terials, such as silicone and hydrophilic or hydrophobic 
acrylates. However, several materials and patterns are 
still studied for the formation of IOLs to improve vision 
quality and to reduce the postoperative complications 
[5]. Modern IOLs stained with chromophores e.g. yel-
low-azo dyes which block the UV-A and blue-light ra-
diation, are commonly used in cataract surgery. The 
main advantage of yellow-tinted IOLs is the reduction 
of chromatic aberration under photopic conditions and 
protection of the retina from phototoxic short-wave-
length light, especially in eyes at risk of age-related 
macular degeneration (AMD) [6]. 

Economically well-developed countries usually per-
form 4000 to 6000 cataract operations per million popu-
lation per year and this number is expected to increase 
extremely by 2030 [7]. Thus, there is a need to monitor 
not only the patients’ eyes exposure to ionising radia-
tion but also those of occupationally exposed medical 
staff who have IOL implants. Even though several epi-
demiological studies have been conducted on cataract 
frequency in relation to radiation doses for natural eye 
lens, very few studies have explored the effect of IR on 
the optical properties of implanted IOLs and the vision 
quality [8, 9]. Megavoltage photon ionising radiation 
for radiotherapy in the 2 Gy and 100 Gy range produce 

no significant alteration in the absorption spectra of 
undoped PMMA and silicone IOLs in the UV and visible 
range [8]. Gamma radiation at a dose of either 25 kGy 
or 35 kGy used for IOLs sterilisation was found to affect 
the absorption spectra of undoped PMMA IOLs in the 
UV and visible spectral region and causing PMMA chain 
scission, decarboxylation and colour change [9]. 

To the best of our knowledge, this is the first time 
that the effect of x-rays on the protective filter of yel-
low-tined IOLs is examined for low-dose radiation de-
livered to patient’s eye during plain radiography, com-
puted tomography (CT) and fluoroscopically guided 
procedures [10-12]. Preliminary measurements have 
been taken addressing the effect in a prior published 
work in even higher doses used in cerebral embolisa-
tions or interventional neuroradiology and in the blue 
light region [13]. This study focuses on the alterations 
to the transparency of yellow-tinted IOLs’ protection 
filter in the harmful UV-A and blue light region after 
exposure to x-ray irradiation, as these wavelength re-
gions are transparent from the human cornea and can 
be absorbed from the natural human lens (UV-A) or 
reach the human retina (blue light) [14, 15]. 

Material and Methods
5 yellow azo-dye doped IOLs (2 SN60AT and 3 SN6AD 
from Alcon) which are widely used in cataract surgery 
were irradiated in air at a radiographic unit (AGFA DR 
600) with doses ranging from 1.1 to 22.6 mGy. The doses 
measured by a suitable dosimeter (Piranha RTI Electron-
ics AB), calibrated at energies between 50 to 140 keV. 
These doses can be delivered to patient’s eye during plain 
radiography, CT and fluoroscopically guided procedures, 
e.g. interventional neuroradiology and cardiology for 
diagnostic and therapeutic uses [11]. The transmission 
spectra of the IOLs were recorded pre-irradiation and 
post-irradiation using a 360 - 2400 nm Tungsten Halogen 
lamp (LS-1, Ocean Optics) as light source. A Labsphere 
integrating sphere (819C-SF-6, NRC Newport Research) 
with spectraflect coating was connected with a USB 4000 
ultraviolet/visible (UV/VIS) spectrophotometer (Ocean 
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Fig. 1. Schematic image of the experimental set-up for the transmission measurements of the IOLs

optics) with operating wavelength range from 360 to 
1100 nm. The IOL was adjusted to the port of the inte-
grating sphere by using a plastic custom-made base to 
hold the haptics of the IOL. The light source was related 
to a UV/VIS optical fiber coupled with a microlens at the 
edge to focus the light on the IOL surface. Another opti-
cal fiber was adjusted perpendicular to the integration 
sphere to collect the diffused light. The collected signal 
was analyzed by the spectrometer and was processed by 
spectrum-analysis software (SpectraSuite, Ocean optics) 
(Fig. 1) [13]. This integrating-sphere configuration offers 
consistent transmission measurements of IOLs with var-
ying lens power in comparison with other measurements 
set-ups like double-beam model [16]. 

The transmission spectrum of each IOL was recorded 
over the operation spectrum range of the spectrometer 
from 360 to 1100 nm. However, the region from 380 - 900 
nm was selected for analysis as the signal noise was in-
creased at the spectrum regions close to the response of 
the spectrophotometer. A dark spectrum was recorded 
as a background correction with an empty plastic base 
and a light trap cover placed in the port of the sphere 
to block the light. A reference spectrum was recorded 
by replacing the light trap cover with the spectraflect 
cover to ensure 100% transmittance [13]. 

The transmittance was calculated according to the 
equation: 
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where, ID is the intensity of the dark spectrum record-
ed by the spectrometer with the light source blocked 
by the light trap cover, Io is the reference light intensi-
ty passing through the empty plastic base and Is is the 
intensity spectrum recorded with the IOL placed in the 
plastic base and illuminated by the light source. 

Results and Discussion

(Fig. 2.) illustrates the pre- and post-irradiation trans-
mission spectrum of the five IOLs in the region from 380 
to 900 nm at the respective irradiation doses 1.1 mGy, 
5.5 mGy, 11 mGy, 14 mGy and 22.6 mGy. According to 
the spectra graphs, the transmittance of the IOLs pre-ir-
radiation (0 mGy) is close to zero in the UV-A light re-
gion due to the yellow protection filter of the IOLs, then 
increases almost linearly in the spectrum region from 
400 to 550 nm and reaches to a plateau of approximately 
90% in the spectrum region from 550 to 900 nm. Some 
spikes which appear are attributed to signal noise of 
the spectrophotometer. After the x-ray irradiation, the 
transmittance of the yellow azo-dye doped IOLs is raised 
in the UV-A and blue light region of 380-450 nm and in 
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the VIS/NIR spectrum range of 550-900 nm reaches to a 
plateau close to 90%. 

The comparison of the transmission spectra of each 
IOL pre- and post-irradiation shows that in the UV-A 
and blue light region there is a systematically increase 
of the transmittance as the irradiation dose increases. 
Statistically significant difference was observed in all 
the cases between pre- and post-irradiation transmis-
sion spectra by using the nonparametric Wilcoxon test. 

P values less than 0.05 were considered significant. Fig. 
3 demonstrates a linear dependence between the per-
centage increase of transmittance and the irradiation 
dose at 380 nm. 

Yellow-tinted hydrophobic acrylic IOLs are designed 
to reduce the absorption of phototoxic UV and short 
wavelength (400 – 500 nm) visible light by adding a yel-
low dye to the IOL and a UV blocking material. UV-A 
poses to induce thymine dimerisation in human reti-

Fig. 2. (a)-(e). Pre- and post-irradiation total transmit-
tance spectra of intraocular lens in the region of 380 - 900 
nm at irradiation doses a. 1.1 mGy, b. 5.5 mGy, c. 11 mGy d. 
14 mGy, e. 22.6 mGy, respectively.
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nal melanocytes, DNA to protein cross-links and sin-
gle-strand breaks DNA in cultured human cells [8, 17]. 
Over exposure to blue light could cause cell apoptosis in 
retinal neurocytes and retinal ganglion cells and photo-
receptor degeneration [18, 19].

Combining our current and previous published re-
sults, it is obvious that the yellow azo-dye IOLs show a 
different transmission behavior in the UV-A and blue 
light region even at low- or high-level exposures to ion-
ising irradiation. In all irradiation doses the transmit-
tance of the yellow azo-dye doped IOLs was increased 
both in the UV-A and in the blue light region and reach-
es to a plateau of approximately 90% in the visible-near 
infrared spectrum region from 550 to 900 nm. On the 
contrary, the transmittance of white IOL (undoped IOL) 
is not affected even at very high irradiation dose [9]. 
The same findings arise from other studies conducted 
by UV-visible spectrometry on undoped IOLs made of 
poly(methyl methacrylate) (PMMA) or silicon irradiated 
by megavoltage photon irradiation used in radiothera-
py [8]. To our knowledge, this is the first time that the 
effect of x-rays on yellow azo-dye doped IOLs filter pro-
tection is examined by our research team and moreover 
at low irradiation doses. The IOLs were exposed to doses 
consistent with the measured eye lens doses which the 
occupational medical staff can receive annually [12]. 

Our results reveal that x-ray irradiation affects the 
protection filter of the yellow azo-dye doped IOLs 
against the harmful for the retina UV-A radiation and 
blue light regardless of their model or their diopter. 

Ionising radiation even at low doses is able to alter 
the optical properties of the yellow azo dye (R-N=N-R’) 
which is incorporated into the acrylic IOL. It has been 
demonstrated that ionising radiation causes discolora-
tion, decomposition and degradation of azo dyes [20]. 

This effect should be considered by the medical staff 
and patients who wear yellow-tinted IOLs and are ex-
posed to ionising radiation during diagnostic and ther-
apeutic procedures. Even if the effective dose which pa-
tients receive through head CT scans is lower compared 
to thoracic, abdominal or pelvic scans, the radiation 
dose delivered to the eye lens during head scanning is 
high enough. In monophasic head CT scans the eye lens 
dose can range from 0.07 Gy up to 0.13 Gy depending on 
the head region [21]. 

One way to protect the patient’s IOL in lower dose 
procedures would be the use of appropriate x-ray 
shielding for the eyes. For head diagnostic procedures 
(e.g. x-ray radiography or scans) substitution methods 
should be considered (e.g. magnetic resonance imaging 
- MRI), if applicable; while for body scans (e.g. CT scans) 
close to the head area the use of protective eyeglasses is 
proposed. The use of radioprotective bismuth garments 
to shield the patient’s eyes can result to a significant 
reduction in eye lens doses. A reduction around 34% 
was estimated for CT scans by using anthropomorphic 
phantoms, when eye globes were entirely included [22, 
23]. However, when eye bismuth shields are used, arti-
facts can appear. The image quality deterioration can 
be reduced by using a topogram-based tube current 
modulation (TCM) instead of a fixed tube current [24].

As far as higher dose schemes, like therapeutic pro-
cedures, are concerned (e.g. radiotherapy), the medical 
physicists should take into account the above men-
tioned phenomenon during the treatment planning, 
if possible. Certainly, the prescribing physician along 
with the medical physicists should balance the pros and 
cons of the use of protective eye-ware for the patient, 
since they may affect the dose distribution and hence 
the treatment outcome. Studies on the effect of ocular 
implants of various materials on the dose distribution 
of photon beam have shown beam attenuation [25]. An 
optimal design of dose planning could be a coupling be-
tween the imperative need for the right treatment and 
the use of appropriate x-ray shielding for the eyes. Τhis 
can prevent the possible alteration of IOL’s protective 
filter avoiding the development of age-related macular 
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Fig. 3. Percentage change of the transmittance of each in-
traocular lens vs irradiation dose in the UV region, at 380 
nm.
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degeneration and reducing the possible glare [26]. Final-
ly, the occupational medical staff should wear eye-pro-
tecting glasses during all IR involving procedures.

Conclusions
IOLs stained with chromophores e.g. yellow-azo dyes 
have become part of the modern cataract treatment 
for vision restoration. X-ray irradiation of yellow-tined 
acrylic hydrophobic IOLs react on the filter protection 
of the IOLs even at low doses and this should be con-
sidered as one of the factors that can affect the post-
operative “life-expectancy” of the IOL and the quality 

of vision. The medical staff and patients which wear 
yellow-tinted IOLs and are exposed to ionising radiation 
during diagnostic and therapeutic procedures should be 
informed about this. Moreover, other types of material 
of IOLs filters less radiosensitive could be a new subject 
of research in the field of IOLs fabrication. R
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