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Abstract

Purpose: Aim of this study was the development of 
an intelligent system (IS) that can determine the rup-
ture-related characteristics in intracranial aneurysms 
detected by computed tomography angiography. 
Material and Methods: 100 intracranial aneurysms in 
100 patients (74% ruptured) were analysed. An IS was 
developed based on machine learning (ML) algorithm 

(WEKA J48 software). The IS used measurements, 
morphological characteristics and location of the an-
eurysms, as well as patients’ age. 70 aneurysms were 
used as the training set, while 30 aneurysms were used 
as the test set.
Results: Using training set, our model along with 
Neuroradiologist interaction indicated the following: 
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Introduction
Non-traumatic subarachnoid haemorrhage (SAH), as 
a result of an intracranial aneurysm rupture, is a very 
serious and potentially life-threatening condition [1]. 
Given the fact that the prevalence of unruptured in-
tracranial aneurysms (UIAs) is about 3% in the general 
population, it is important to manipulate patients har-
bouring a UIA, since a delicate balance between the nat-
ural history of the disease and complications from any 
possible treatment (endovascular or surgical) is evident 
[2, 3]. 

In the past, numerous risk factors for aneurysm rupture 
have been outlined, such as aneurysm size and location, 
irregular shape, neck-dome ratio, bottleneck factor, size 
ratio and height-to-width ratio [4-7], as well as wall shear 
stress (WSS) and other derivative haemodynamic factors 
[8-10]. Moreover, clinical risk scores for aneurysms rup-
ture based on patient demographics and aneurysmal ana-
tomical characteristics have been proposed to predict an-
eurysm risk rupture, but still the decision of treating such 
patients is challenging [11-13]. 

An intelligent system (IS) or expert system is a system 
with the ability to make decisions like those of an expert 
in a cognitive field. Expert systems are computer pro-
grams that are derived from a branch of computer science 
research called artificial intelligence (AI) [14, 15]. AI is a 
powerful computational process which may possibly de-
scribe, in a better way than statistical methods, random 

associations among several parameters in numerous med-
ical databases. AI comprises many machine learning (ML) 
algorithms, i.e. data mining tools that are used for knowl-
edge extraction from big data, dealing with well-described 
instances of a certain condition. The most popular way to 
represent knowledge in medicine are decision trees or 
production rules [16]. Some studies have shown the per-
formance of specific ML algorithms for the prediction of 
aneurysmal risk rupture [17-22]. 

The present study aimed to develop an IS, based on 
morphological and topographic parameters derived from 
cerebral computed tomography angiographies (CTAs), 
that can determine rupture-related characteristics. The 
latter could be clinically useful when interpreting CTAs 
with UIAs or in patients presented with SAH and multiple 
aneurysms. 

Material and Methods 
This retrospective, single-center study was conducted at 
the tertiary Neurointerventional Center of our University 
Hospital, following the approval of the local Ethics Com-
mittee University Hospital of Patras research ethics board.

We retrospectively reviewed 100 cerebral CTAs (ob-
tained from the database of our hospital) in 100 patients 
(33 male, 67 female) diagnosed with intracranial aneu-
rysms, both ruptured and unruptured. Cases were pro-
portionally selected based on the standard knowledge of 
intracranial aneurysmal frequency distribution and oth-

The two most important rupture-related aneurysmal 
characteristics were dome/neck ratio ≥1.96 and irreg-
ular shape (regardless of location). Other rupture-re-
lated characteristics included anterior circulation 
aneurysms that were irregular in shape (regardless of 
dimension) and posterior circulation aneurysms with 
maximum dimension ≤6.7 mm (regardless of shape). A 
negative-related characteristic for rupture included 
posterior circulation aneurysms with wide neck and 

maximum dimension >6.7 mm. The accuracy of the IS 
in our test set was 80%. Age did not influence aneurys-
mal risk status.
Conclusions: In the present study we developed an IS 
which, based on certain aneurysmal parameters, can 
accurately identify rupture-related characteristics. As 
a result of the interaction between ML algorithms and 
clinical expert, a number of rules were created that can 
be further evaluated in larger studies. 

Key words Intracranial aneurysm/risk factors; Rupture; CT angiography; Intracra-
nial aneurysm; Rupture; Machine learning
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erwise in an unbiased and random manner. The mean 
age of patients was 57.34 ± 12 years (range between 22-82 
years).

Cerebral CT Angiography 
Cerebral CTA exams were performed on two CT systems 
(GE Lightspeed 16-slices GE Healthcare, USA and Toshiba 
Aquillion Prime 80 slices, Toshiba Corp, Japan). On both 
scanners, the protocol included a plain brain CT scan, 
followed by contrast-enhanced intracranial CTA, using a 
bolus tracking technique. Therefore, 60-80 ml of iodine 
agent depending on patient’s cardiac status were used, 
at an injection rate of 4 ml/sec, with standard acquisition 
parameters. 

Raw data were processed at dedicated workstations (Ad-
vantage WS-GE and VITREA respectively). The following 
morphologic characteristics of aneurysms were recorded 
and analysed:

A) aneurysm neck size in millimeters,
B) diameter vertical to the neck in millimeters,
C) the maximum dimension of the aneurysm in milli-

meters,
D) neck/dome ratio as well as dome/neck ratio (ASPECT 

ratio) and
E) regular or irregular shape (based on the presence of 

smooth rounded/oval shape or not, as well as the pres-
ence or not of a daughter sac) (Fig. 1).

Aneurysm dimensions were reliably measured on axi-
al images or multiplanar reconstructions of 0.5 mm and 
0.625 mm slices. In cases of complex morphology, a 3-D re-
construction of the aneurysm from the 0.5 mm and 0.625 
mm slices of each CTA was used to guide measurement 
procedure (Fig. 2). Location of the aneurysms as well as 
anatomic variations of the circle of Willis were also re-
corded. 

All morphological data were interpreted by an experi-
enced neuroradiologist with >15 years of experience in in-
tracranial CTAs. The patients’ aneurysmal morphological 
data and their location are shown in Table 1.

Machine learning tools - Knowledge extraction from data 
(WEKA) 
We applied the Waikato environment for knowledge anal-
ysis (WEKA), which is an open-source machine learning 
software platform, to extract knowledge by the form of 
rules. The software is readily available and can be down-
loaded from the official WEKA’s site (https://www.cs.wai-
kato.ac.nz/ml/weka/). It can be easily installed to all soft-
ware platforms such as Windows, Mac OS, Linux etc. More 

Fig 1. 3D reconstruction of computed tomography angiog-
raphy shows an anterior communicating artery aneurysm. 
White arrow indicates irregularity of the aneurysmal sac 
(daughter sac).

Fig 2. 3D reconstruction of computed tomography angiogra-
phy shows an anterior communicating artery aneurysm with 
relatively high Dome/neck (ASPECT) ratio.
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specifically, a WEKA's J48 algorithm has been applied to 
approach our problem by creating a decision tree from 
our data. J48 is an algorithm used to generate decision 
trees [16]. 

Decision trees (which have the form of inverted tree) 
are the most popular way to represent knowledge, to 
extract interesting information or to build classification 
models and handling imbalanced data. They are built by 
partitioning the training dataset until the subsets con-
tain only data belonging to a single class. When building 
a decision tree, the interaction with a human expert is 
crucial, by two important processes called pruning and 
attribute selection. By these processes, irrelevant and 
redundant attributes are being removed, thus improving 
accuracy of the model. Following decision tree build-up, 
the discovered knowledge is represented by the form 
of rules. Decision rules follow a general structure: If the 
conditions are met, then make a certain action. Finally, 
J48 creates a table named confusion matrix. Confusion 
matrix, or error matrix in many cases, has been used to 
describe the performance of a classification model (or 
“classifier”) on a set of test data for which the output 
values are known [23-28]. 

Since machine learning algorithms have a mathematical 
basis and many directly incorporate statistics into their al-
gorithms, we waived statistical analysis for our data set 
evaluation [29]. Our dataset comprised of 100 intracra-

nial aneurysms and each one of them had the following 
attributes: patient’s gender, patient’s age, location of the 
aneurysm (Acom, Pcom, MCA, PCA, ICA, etc), maximum 
dimension, the aneurysm’s shape, the neck/dome ratio, as 
well as the regional anatomic variations. Each one of them 
had also an output class named “RUPTURED” (YES or NO). 
The output class was known from the presence of SAH on 
plain CT or from the history of the patient. 

Firstly, we used all attributes to create a decision tree, 
but we noticed that our model was very complex and con-
fusing. Following attribute selection and pruning process, 
we ended up in the following: Aneurysms were divided 
into anterior or posterior circulation (AC, PC) while re-
gional anatomic variations were excluded since they were 
apparent only in one anatomic location in our dataset. 
Although we know that patient’s gender is an important 
epidemiologic characteristic and has been addressed as an 
independent risk factor for rupture, it had to be excluded 
from our study during attribute selection process. In fact, 
when patient’s gender was initially included in our model, 
this proved to be very complex, confusing, and “noisy”. 
This occurred because aneurysms were proportionally 
selected based on the standard knowledge of intracranial 
aneurysmal frequency distribution and not based on the 
gender of the patient. 

Finally, we configured the dataset to contain the at-
tributes age, location, maximum dimension, shape, 
ratio (neck) / (vertical neck) with RUPTURED output 
class. The new dataset was divided by the J48 algorithm 
into two subsets in a random way, a training set that 
was used to construct the decision tree and a test set 
that was used to evaluate its accuracy. The training set 
included 70 aneurysms and the remaining randomly di-
vided dataset was the test set (30 aneurysms, 23 of them 
ruptured). We used four combinations of dataset attrib-
utes to achieve better classification results and during 
the process all created decision trees were tested for 
their reliability by the expert neuroradiologist, thus we 
ended up to the one that included: location (LOCI), max-
imum dimension (Dm), shape (Ir.Sh) and neck/dome 
ratio (Fig. 3).

Rules were generated as a result of our existing data 
analysis following a selection process (attribute selection 
and pruning) that combined neuroradiologist’s expert 
knowledge, experience and existing literature, so that the 
rules would have a scientific basis.

 Table 1. Aneurysm parameters

Variable Ruptured Unruptured

Aneurysms 74 (74%) 26 (26%)

Neck/dome Ratio 0.51 ± 0.25 0.72 ± 0.31

Aspect Radio 1.96 ± 0.96 1.39 ± 0.59

Shape

Regular 7 (7%) 6 (6%)

Irregular 67 (67%) 20 (20%)

Maximum Dimension 
(mm) 6.79 ± 4.12 6.79 ± 4.23 6.79 ± 3.88

Location

AC (57%) 40 (40%) 17 (17%)

PC (43%) 34 (34%) 9 (9%)
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Results 
The interpretation of the created decision tree resulted in 
the following knowledge extraction:

1. The dominant attribute (root node) that influenc-
es the rupture status of the aneurysms of our dataset is 
dome/neck ratio (ASPECT ratio-AR) of 1.96 (or neck/dome 
ratio of 0.51). 

2. The second most frequent parameter that influences 
the rupture status is the irregular shape.

3. Patient’s age did not appear to influence our results.
Considering the generated decision rules, the following 

results were evident:
The two most important rupture-related aneurysmal 

characteristics were dome/neck ratio ≥1.96 and irregu-
lar shape (regardless of location). Other rupture-related 
characteristics included AC aneurysms that were irregu-
lar in shape (regardless of dimension) and posterior cir-
culation aneurysms with maximum dimension ≤6.7 mm 
(regardless of shape). A negative-related characteristic for 
rupture included PC aneurysms with wide neck and maxi-
mum dimension >6.7 mm.

The overall rates for the created classification model based 
on decision tree algorithm were: Weighted Average Accura-
cy 80%, Precision 84.1%, Sensitivity 80%, Specificity 34%.  

The created confusion matrix, describing the perfor-
mance of our classification model is shown in Table 2. As 
it has been shown, 6 unruptured aneurysms of our test 
set were misclassified as ruptured (false-positive). A more 
detailed analysis of the decision tree showed that the fea-
ture, which was evident in all misclassified aneurysms, 
was an irregular shape, i.e. the model classified unrup-
tured irregular shape aneurysms as ruptured.

Discussion 
Based on the results of our detection model, the most 
dominant morphologic characteristic that correlates 
with rupture of an intracranial aneurysm (regardless of 
location and maximum dimension), is AR of 1.96 or Neck/
dome ratio of 0.51. This finding is in keeping with the 
findings in current literature. Many theories have been 
postulated to explain why narrow-necked aneurysms are 
more vulnerable to rupture [30-33]. Several studies have 
also addressed the importance of this ratio, although this 
characteristic was not included as a risk factor in "Inter-
national Study on Unruptured Intracranial Aneurysms"  
studies [34-36]. Even though the threshold of this param-
eter seems to vary amongst different studies (from 1.05 to 
2.3) it has been reported that the higher the ASPECT ratio, 

Fig 3. WEKA’s J48 decision tree.
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the more likely the aneurysm is to rupture [8, 12, 13, 37, 
38], although some aneurysms with relatively wide necks, 
in certain weather conditions will eventually rupture [39]. 

In our study the second most frequent parameter found 
to correlate with aneurysmal rupture (and a constant 
finding in anterior circulation) was the irregular shape of 
the aneurysm. Nevertheless, we believe that this feature 
is the most important, as it significantly influenced the 
accuracy of our study in a certain way. More specifically, 
a very low specificity was evident in the group of unrup-
tured aneurysms, meaning that numerous of unruptured 
aneurysms were classified as ruptured. On the contrary, 
all ruptured aneurysms were correctly classified, thus the 
overall prediction accuracy for each class was high. The 
overall ability of our model to classify ruptured aneu-
rysms was high as opposed to its ability to classify unrup-
tured aneurysms. We found that false-positive instances 
(6 in total) related to unruptured aneurysms of our test 
set were classified as ruptured aneurysms. Based on the 
characteristics of our dataset, our model classified 6 out of 
7 unruptured aneurysms as ruptured (Table 2). One could 
argue that this observation could be the result of the small 
imbalanced sample of the test set which mostly comprised 
of ruptured aneurysms, but on the other hand we know 
that decision trees frequently perform well on imbalanced 
data. Furthermore, a more detailed analysis of the deci-
sion tree which performed to explain our results showed 
that the feature that was evident in all misclassified an-
eurysms was an irregular shape, i.e. the model classified 
unruptured irregular shape aneurysms, as ruptured. This 
is quite important, as it highlights the importance of ir-
regular shape in an unruptured aneurysm as a potential 
instability factor. Besides, it is well known that irregular 
shape is an important factor related to rupture. Many 
studies have highlighted the importance of this feature 
and revealed higher rates of rupture in aneurysms with 
irregular shape or daughter sac [6, 40-42]. It has been as-
sumed that a weakness in the wall, or differences in wall 

shear stress within the aneurysmal sac, could be responsi-
ble for the rupture. 

Although it is known that post‑rupture morphology 
is not always the same with the pre‑rupture model, in a 
large observational study by Lindgren et al. [40] it was 
found that a number of aneurysms had been ruptured 
during follow-up. In only 20% of them the shape had been 
changed. 

An attractive hypothesis suggests that aneurysms grow 
over time, with periods of relative stability as well as po-
tentially rapid growth, therefore harbouring a noncon-
stant risk of rupture over time. Consequently, the pres-
ence of irregularity in an unruptured aneurysm might 
well mean wall instability and potential increased risk of 
rupture, regardless of the size of the aneurysm [30, 43, 44]. 

Those two main morphologic characteristics that our 
model detected, as strong rupture-related factors (irregu-
lar shape and high AR), have been also addressed in other 
AI studies. Tanioka et al. [20] in a very recent study ap-
plied a Random Forest ML algorithm to morphologic and 
haemodynamic data of cerebral aneurysms (based on CTA 
images) and created three classification models to cor-
rectly identify the rupture status. The model consisting 
of only morphologic variables achieved overall accuracy 
of 77.0%, with the most important parameters being the 
relationship between neck and dome of the aneurysm 
and irregular shape, as in our study. Liu et al. extracted 
morphological features of 719 aneurysms, by using PyRa-
diomics and found that the most important factor for 
stability was flatness (i.e. smooth shape), while unstable 
aneurysms showed irregularity especially in patients with 
hypertension [19].

Two other interesting remarks of our study are relat-
ed to posterior circulation aneurysms. These aneurysms 
are of great importance, because of their increased mor-
bidity and mortality rates, as well as their higher rupture 
risk (when compared to anterior circulation). Regarding 
posterior circulation, our study showed that a rupture-re-

 Table 2. Weka’s J48 Confusion Matrix

Data class A B ‹‹‹‹ Classified as

Actual Positive True-positive 23 False-negative 0 A=RUPTURED

Actual Negative False-positive 6 True-negative 1 B=UNRUPTURED
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lated characteristic included maximum dimension ≤6.7 
mm (regardless of shape), while a negative-related char-
acteristic for rupture included wide neck and maximum 
dimension >6.7 mm. 

Although these results partially contradict the results 
of the "International Study of Unruptured Intracranial 
Aneurysms" and other studies [4, 5, 45], they are in keep-
ing with a very interesting study by Hostettler et al. [46], 
where most ruptured aneurysms were smaller than 10 
mm. This might be explained by the hypothesis in which 
rapidly developing unstable aneurysms that eventually 
rupture are expected to be relatively small. So, larger in-
cidentally discovered aneurysms of the posterior circula-
tion are not in danger of rupture, because they have been 
stabilised, contrary to smaller aneurysms which might 
not have reached this critical stabilisation point. 

Finally, the patients’ age did not influence our results, 
although data from large observational studies has shown 
that younger age (<40 years) is an important factor that 
might influence the decision-making procedure to treat 
an unruptured aneurysm [47]. This was included in a re-
cently proposed scoring system by Juvela [13]. 

Many efforts have been made to create classification 
tools to assess the risk of rupture of an unruptured an-
eurysm, based on AI algorithms. The current data litera-
ture shows heterogeneity, with implication of different 
AI tools, based on different angiographic modalities [18, 
19]. Nevertheless, some studies showed similar results 
to our detection model, while others showed better per-
formance. The latter used models that were complicat-
ed, multifactorial whereas methodological issues were 
evident [22]. For example Liu et al. studied 594 anterior 
communicating arteries aneurysms, by using artificial 
neural network, and achieved overall prediction accura-
cy of 94.8 % [17]. As de Jong highlighted, the above study 
had some methodological issues and such high accuracy 
rates should be dealt with caution, because “training an 
artificial neural network with a mix of real and synthetic 
data might lead to non-realistic prediction precision” [48]. 
Finally, some studies were not intended to determine and 
predict rupture-related characteristics but were used only 
for knowledge extraction [21].

Strengths of our study are the following: WEKA’s J48 
decision’s tree rules are easily understandable to radiol-
ogists. Another advantage of our determination model 
is the interaction between the AI systems (machine) and 
the expert (human). It was due to this interaction that the 

decision trees were valid and came up with reasonable re-
sults. Another potential advantage of our study is that we 
chose to incorporate relatively simple model parameters, 
thus making our model easy to apply in everyday practice. 
By doing so, expert professionals might take advantage of 
it, without having to encompass any sophisticated data, 
other than aneurysm dimensions, morphology and topog-
raphy. The aforementioned information is readily availa-
ble from CTAs data, which is anyway performed in such 
patients.

Our study has certain limitations. We incorporated a 
relatively small sample of aneurysms, while the number 
of cases between ruptured and unruptured aneurysms 
was not balanced. A smaller number of patients with un-
ruptured intracranial aneurysms were included, because 
most of our patients harboured ruptured aneurysms. 
Although AI tools are not entirely dependent on sample 
size, a larger study group is desirable. Moreover, decision 
trees frequently perform well on imbalanced data [49, 
50], but such imbalance could underestimate the perfor-
mance of the system. For example, in a larger sample of 
unruptured aneurysms with regular shape, these might 
have been classified correctly, thus our model could have 
shown higher accuracy. Furthermore, our results regard-
ing the posterior circulation aneurysms, although inter-
esting, were based on a small-sized sample of patients 
and do not represent an evidenced based fact. For ethical 
reasons, we did not perform a long-term follow-up study 
in unruptured aneurysms, so evolution before rupture as 
well as information about the morphology of aneurysms 
before and after rupture could not be recorded. Therefore, 
a large, prospective, multicenter study is needed to verify 
our findings in the future. 

Future plans include improvements of system’s accura-
cy, validation of the IS in a larger test set sample, as well 
as the creation of an application based on this algorithm, 
which can be used as a supportive or adjunctive tool of 
less experienced radiologists to highlight rupture-related 
factors. 

Conclusions
In the present study, we developed an IS based on certain 
aneurysmal parameters that can determine rupture-re-
lated characteristics. Our system, because of the interac-
tion between ML algorithms and clinical expert, created 
some new rules which can be further evaluated in larger 
studies. Its inability to correctly classify unruptured an-
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eurysms reduces the overall success rate. However this 
discrepancy, associated with unruptured aneurysms of ir-
regular shape, could point out that such aneurysms are at 
a higher risk of rupture. R
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