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EDITORIAL

Tumour histology classification is based on biopsy, 
that is invasive, destructive (reducing the number 
of monitoring opportunities) and suffers from poor 

cost efficiency. Biopsy sampling of a random spatial subre-
gion of a tumour at a single time point may not be able to 
reflect the complex tumour state accurately [1-4]. Further-
more, it is well known that a hallmark of tumours is their 
spatial and temporal heterogeneity. On the other hand, im-
aging provides an opportunity to extract valuable informa-
tion regarding tumour characteristics in a non-invasive way. 
It’s not subjected to bias selection, since the entire tumour 
can be assessed multiple times during the course of the dis-
ease (before, during and after treatment). However, current-
ly imaging evaluation is based on the subjective opinion of 
radiologists, is time consuming, varies significantly proto-
col-wise and therefore suffers from low reproducibility. 

Over the past decade the advances in computational im-
age analysis methods have provided a unique opportuni-
ty to transform digital standard of care medical images to 
mineable high dimensional data (radiomics) that potential-
ly reflect tumour biology and predict patient outcome in 
several tumour types [2, 5-15]. A relatively small number of 
studies have addressed the critical question of whether ra-
diomic metrics correlate with histopathological and genom-
ic changes in regions of interest [5, 15-18]. 

In this issue of the Hellenic Journal of Radiology, there are 
two very interesting articles on radiomics in oncology. Man-
ikis and colleagues [19] investigate the role of T2- based MRI 
radiomic features for discriminating tumour grading in soft 
tissues sarcomas. Bisdas and colleagues [20] provide a com-
prehensive systematic review on the current evidence for 
the clinical value of radiogenomics in glioblastomas. Both 
papers highlight the potential important role that radiomics 
can play in oncology. However, existing radiomic approach-

es have not encoded the extent of variability between dif-
ferent regions within the tumour (habitats) [21, 22] and be-
tween multiple metastatic tumour sites within the patient 
[23]. Yet, genomic heterogeneity within the tumour and 
across metastatic tumour sites in the same patient is a major 
cause of treatment failure and development of resistance to 
targeted therapies [24-27] as well as specific patterns of ma-
lignant cell spread within the peritoneal cavity [28]. The le-
sion-specific properties, immunological components of the 
tumour microenvironment, may modulate malignant cell 
invasion and expansion, thereby shaping evolutionary se-
lection [27,29]. However, quantification by repeated multi-
ple tissue sampling in the same patient is challenging to im-
plement in routine clinical practice. 

Standard-of-care imaging offers a unique opportunity to 
non-invasively quantify and dynamically track spatial tu-
mour heterogeneity. Nevertheless, most of the radiomics 
methods to date have been developed and applied to meas-
ure average intra-tumour heterogeneity based on a single 
disease site per patient in primary tumours [5, 15-18]. In the 
metastatic setting, the largest metastasis has been typically 
chosen for radiomics analysis and thought to be representa-
tive of the overall tumour burden heterogeneity [15, 18, 30]. 
In addition, most of the studies lack robust biological vali-
dation due to poor methodology for radiomics feature ex-
traction, retrospective design and lack of adequate methods 
for accurate spatial co-registration of imaging with tissue 
sampling [11]. Most importantly, radiomics research is still 
working in the space of correlation rather than integration 
with other multi-omics data. The fact that tumours displays 
spatial heterogeneity at such disparate physical scales sug-
gests that a combined approach to integrate the relevant 
data sources (genomics, transcriptomics, radiomics) is need-
ed to unravel the complexity of the disease. R
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