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Abstract

Glioblastomas (GBM) have one of the poorest progno-
ses of any cancer. Current cutting-edge research aims 
to pave the way for new non-invasive methods of di-
agnosing brain tumours through innovative imaging 
techniques and genomic information from tumour sam-
ples. Over the past few years, various whole genome se-
quencing analysis has identified biomarkers and thus 
gradually changed the way of diagnosing brain tu-
mours. In this context, MRI is a versatile imaging tech-
nique as it can provide multifaceted information de-

rived from both morphologic and functional imaging 
biomarkers (radiomics) in brain. Radiogenomics is at-
tempting to probe any correlation between radiological 
and histological features and hopefully assess the phys-
iological heterogeneity and genetic alterations paving 
the way to a holistic approach of the tumour metabol-
ic, pathophysiological and structural fingerprint.  This 
systematic review aims to summarise the current pub-
lished evidence of radiogenomics in GBM and also raise 
awareness for future research in this field. 
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Introduction
A remarkable leap in the last decade has been the de-
velopment of imaging techniques that help distinguish 
tumour from treatment effect, different tumoural 
grade and even different molecular profile. Radiom-
ics is an emerging field  that aims to extract quantita-
tive data from medical images in order to characterise 
pathological processes [1]. Radiogenomics (aka imag-
ing genomics) in neuro-oncology uses radiomics to find 
correlation between images and molecular profile of 
the tumour. Glioblastomas (GBM) manifest strong phe-
notypic variations that can be assessed using magnetic 
resonance imaging (MRI), but still the majority of their 
underlying biological drivers and genetic aberrations 
are largely unknown. Thus, efforts have been made 
over the past years to establish the role of radiogenom-
ics in GBM as an important goal of this approach is the 
ability to provide personalised therapy. This review 
aims to describe the current evidence for the added val-
ue of radiogenomics in diagnosis and treating GBM and 
outline the premises of this emerging field in the future 
of neuroradiology and neurooncology.

GBM are aggressive malignant primary tumours of 
the central nervous system (grade IV according to the 
WHO classification). They account for 45% of malignant 
primary brain tumours [2]. Over 90% of diagnosed GBM 
cases are primary gliomas, arising from normal glial 
cells through multistep oncogenesis. The remaining 
10% are secondary gliomas originating from tumours 
of lower grade [3-6]. The aetiological background of 
GBM has not been fully clarified, however the major-
ity of them are believed to be of spontaneous origin. 
The breakthrough in genetic identification in GBM was 
achieved by Verhaak et al. [7], who distinguished four 
different molecular subtypes in accordance with the 
genetic aberrations variability and gene-expression: 
the classical, mesenchymal, proneural and neural sub-
type. The exact classification of GBMs is indeed very 
challenging and clearly illustrates the need for new im-
aging surrogates of the molecular profile [8]. Although 
extensive research has been ongoing for many years, 
new GBM molecular biomarkers are discovered almost 
daily. These include: (i) Loss of 1p, 19q and 10q hete-
rozygosity; (ii) IDH1 or IDH2 mutations [9]; (iii) Elevated 
expression of epidermal growth factor (EGF), Iatrophi-
lin, and "7-transmembrane domain-containing" pro-
tein 1 on chromosome 1 (ELTD1); (iv) Mutation in the 

H3F3A gene, causing the encoding of histone H3.3; (v) 
Phosphate and tensin homolog deleted on chromosome 
ten (PTEN) gene, also termed MMAC1 or TEP1, on chro-
mosomal band 10q23; (vi) Aberrant EGFR activity, re-
sulting in EGFR overexpression; (vii) Receptor CX3CR1 
and chemokine CX3CL1 positivity; (viii) O6-methylgua-
nine DNA methyltransferase (MGMT); and (ix) Vascular 
Endothelial Growth Factor (VEGF) overexpression. The 
role of the aformentioned molecular variations is two-
fold. In addition to their use in categorising the large 
variety of the glial tumours and contributing to a more 
holistic understanding of the pathophysiology and ma-
lignant process, they are the foundation of “molecular-
ly targeted therapy” and future of break-through imag-
ing techniques.

Radiogenomics describes the correlation between 
specific imaging phenotypes, using quantitative data 
and molecular characteristics of a certain disease. This 
area is setting a new direction in oncology research. 
The question that subsequently emerges and we sought 
to address is to which extent are radiogenomics cur-
rently elucidated.

Material and Methods
Comprehensive, structured literature search was con-
ducted in PubMed for English articles published from 
2007 to 2018 on radiogenomics in oncology with search 
terms including “radiogenomics”, “imaging genomics”,  
“glioblastoma”, “genomics“,  “gene” and  “molecular”. 
Robust inclusion/exclusion criteria were applied for se-
lection of eligible articles. Two authors separately per-
formed quality assessment according to the QUADAS-2 
tool. Data were extracted in a pre-designed spread-
sheet following the PRISMA flowchart. References of 
included articles and literature reviews were checked 
for additional eligible studies. The principal aim was 
to include original and prevailing studies in humans 
shedding light on the current position of radiogenom-
ics in the field of neurooncology and especially in GBM. 
Studies appraising post-radiation-therapy imaging dis-
tinctions as well as studies performing radiogenetics 
using immunochemistry were excluded, as this scope 
of radiation genomics is clearly outside of our ongoing 
research and interest field. Furthermore, literature re-
ferring only to the term “radiomics”, without any el-
ements of “radiogenomics”, were not included in our 
review. In total, we included 23 articles, which con-
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tained original research into the current role of radiog-
enomics in GBM. The summary, including the unique 
value and any major shortcomings of the eligible stud-
ies are presented below. Illustrative examples of basic 
radiogenomics correlation tasks for GBM genotypes 
classification using multimodal MRI and the respective 
textural features are shown in Figs. 1-4, where texture 
images (intensities of the neighbouring voxels) are gen-
erated using ITK-SNAP (http://itksnap.org). Compre-
hensive biomarker extraction can be performed using 
shape and intensity features, to capture tumour shape 
or for distribution mapping through all voxels in the 
segmented tumours. Haralick texture features relate 
to the tumour texture and include angular secondary 
moment, image contrast (large differences between 
neighbouring voxels), entropy (the orderliness of the 
gray level distribution in the image), correlation, sum 
square, sum average, inverse difference moment, sum 
entropy, difference variance, sum variance, difference 
entropy. 

Results
The included studies and the investigated radiomics 
and genomics features along with any additional im-
mune-histological biomarkers are illustratively sum-
marised in Table 1. Ellingson et al. published an exten-
sive study on the association between GBM locations 
and imaging phenotypes, tumour molecular profiles 
and clinical variables in 507 patients with primary GBM 
[10]. The study demonstrates that the majority of GBM 
develops into the periventricular white matter regions 
adjacent to the subventricular zone. Moreover, results 
showed that MGMT promoter methylated tumours oc-
cur regularly in the left temporal lobe, whilst tumours 
lacking loss of PTEN are found most frequently in the 
frontal lobe. MGMT methylated tumours with the IDH1 
mutation tend to occur in the left frontal lobe. EGFR 
amplified and EGFR variant 3-expressing tumours occur 
most frequently in the left temporal lobe. A similar re-
gion in the left temporal lobe was associated with ben-
eficial response to radiochemotherapy and increased 
survival. Results from this study suggest that tumour 
location may be related in the specific molecular and 
genetic profiling of GBM and their reaction to cytotox-
ic treatment and overall survival. Nevertheless, critical 
limitations to this study include: (a) the retrospective 
nature of the analysis and (b) the lack of registration of 

the images into standard stereotactic atlas space.
The first comprehensive radiogenomic paper using 

the open-access TCGA data base and TCIA images was 
published by Zinn et al. [11]. Their analysis aimed to ex-
plore genomic correlates of invasion and volume of the 
tumour. Peritumoural FLAIR and T2-weighted(w) im-
age signals were used to evaluate the extent of oedema 
and tumour infiltration, subgrouping the patients into 
high, medium, and low FLAIR volume groups. High and 
low groups were analysed and compared for differen-
tial genomic expression profiles. The top upregulated 
gene in the discovery (4-fold upregulation) and valida-
tion (11-fold) sets was perostin (POSTN). The top down-
regulated microRNA in both sets was miR-219, which 
binds and negatively regulates POSTN. Above median 
expression of POSTN resulted in significantly decreased 
survival and shorter time to disease progression. High 
POSTN and low miR-219 expression were significantly 
associated with the mesenchymal GBM subtype. How-
ever, a limitation in the TCGA radiological data is the 
lack of image-tissue sample registration; thus, gene 
expression profiles cannot be matched to a specific 
location on MRI [11]. Moreover, due to the large num-
ber of probes, false positive gene hits may occur. This 
study and its outcomes were of great significance, as 
they proposed a novel diagnostic method to screen for 
molecular cancer subtypes and genomic correlates of 
cellular invasion. Last but not least, miRNA targeting 
is shaping the future of oncogenic alterations manip-
ulation. 

A multilevel radiogenomic study by Jamshidi et al. 
[12] detected GBM MRI radiogenomic signatures result-
ing from changes in messenger RNA (mRNA) expression 
and DNA copy number variation (CNV). Imaging char-
acteristics such as contrast enhancement, necrosis, 
contrast-to-necrosis ratio, T2 abnormality (infiltrative 
versus ooedematous tumour type), mass effect, and 
subventricular zone (SZE) involvement were assessed. 
A coherent MRI, mRNA and DNA radiogenomic associ-
ation map for GBM was made, providing non-invasive 
evaluation of genomic signatures in patients with GBM. 
For instance, the contrast enhancement association 
with LTBP1 could introduce enhancement as surrogate 
biomarker for LTBP1 in more aggressive GBM pheno-
types. The contrast-to-necrosis ratio was shown to be 
associated with RUNX3 and KLK, with increased ex-
pression of RUNX3 expected to have inhibitory effects 
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Fig. 1. T2-FLAIR (a) and textural features (b) images of an IDH-mutant, MGMT-methylated right temporal GBM. 

a b

Fig. 2. T2-w (a) and textural fea-
tures (b) images of an IDH-mu-
tant, MGMT-methylated and 
EGFR-amplified left temporal 
GBM. The post-contrast T1-w 
images (c) do not demonstrate 
any discernible enhancement. 
The post-contrast T1-weight-
ed -texture features (d) are also 
demonstrated.

a

c

b

d
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Fig. 4. T2-FLAIR (a) and textural features (b) images of an IDH-mutant, MGMT-unmethylated, EGFR-amplified right frontal GBM 
showing cystic/necrotic regions and crossing the midline. The ADC (c) and relative cerebral blood volume (e) maps, along with 
their texture features maps (d and f, respectively) are provided.
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Fig. 3. Post-contrast T1-w images (left) and textural features (right) of an extensive left temporal IDH-wild-type, MGMT-unmeth-
ylated and EGFR-amplified GBM with necrotic areas and rather limited oedema.  

A systematic review on the current radiogenomics studies in glioblastomas, p. 32-44
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on cell migration and invasion. This was the first study 
that associated KLK3 with GBM, although it has previ-
ously been implicated as a gene existing in other malig-

nancies. The SVZ involvement trait was associated with 
genetic abnormalities such as RAP2A, which is involved 
in in vitro migration and invasion of glioma cells [12]. 

Table 1. Summary table of the included radiogenomics in glioblastoma studies with the investigated radi-
omics-genomics features and immune-histological biomarkers.

Study (Reference) Publication 
Year

Imaging and Immuno-Histological 
Biomarkers Genes

Ellingson et al. (10) 2013 MGMT promoter methylation,
IDH1 mutation status IDH1, EGFR, MGMT, PTEN

Zinn et al. (11) 2011 microRNA expression POSTN, CXCL12*, COL1A1, 
COLA63, GRB10, SRPX2

Jamshidi et al. (12) 2014
SVZ involvement, 

necrosis,
mass effect

KLK3, RUNX3, RAP2A, 
FOXP1, PIK3KP1, LTBP1, 

CHI3L1, LM03

Gutman et al. (13) 2013
Oedema, necrosis, 
non-enhancement,

minor axis 

TP53, PTEN, EGFR, NF1, 
IDH1, ERBB2, PDGFRA, 

RB1, TP53, PIK3CA

Colen et al. (14) 2014
Ependymal. involvement,

DWMT,
enhancement across the midline

MYC oncogene, NDUFB3, 
NDUFB5, UQCRH, NDUFS4, 

COX17, COX5B, ATP5J

Barajas et al. (15) 2012 ki67,
necrosis, enhancement, rCBV

Hu et al. (16) 2017 Enhancement EGFR, PDGFRA, PTEN,  
CDKN2A, RB1, TP53

Cho et al. (17) 2018 nCBV, 
MGMT promoter methylation IDH1, IDH2, MGMT, ATRX

Qian et al. (18) 2016
IRF9,

XRCC1,
MGMT promoter methylation

MRPS6 , IFI44L, APBB3, 
DYNLL2, MED12, TULP3, 

ERCC1, MGLL, ATF7

Gevaert et al. (19) 2014 GAP43,
WWTR1, necrosis, enhancement IL4

Liu et al. (20) 2017
rCBV peri-tumour,

ki-67 labelling index,
mTOR

IDH, TP53, EGFR

Ellingson et al. (21) 2018 Enhancement, tumour volume, 
MGMT promoter methylation MGMT

Kickingereder et al. (22) 2016
EGFR amplification,

CDKN2A loss,
MGMT promoter methylation

PDGFRA, MDM4, CDK4, 
NF1

Hong et al. (26) 2017 nCBV, nADC IDH, ATRX

Zinn et al. (27) 2018 POSTN expression POSTN, NFKB

Demerath et al. (29) 2017 ki-67, EGFRvIII IDH1, OLIG1, OLIG2, BCAN

Smedley and Hsu (30) 2018
Radiomics including surface area, 
volume, sphericity, major-minor 

axis, compactness

A systematic review on the current radiogenomics studies in glioblastomas, p. 32-44
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However, the major limitation of the above study was 
the very small sample size. 

Gutman et al. [13] investigated  molecular, clinical 
and presurgical MRI data in 75 patients with GBM. The 
importance of this study is the established significant 
correlation between contrast-enhanced tumours and 
Verhaak´s gene expression classification. In particular, 
the proneural subtype class was enriched with GBM 
that displayed low levels (<5%) of contrast enhance-
ment. The mesenchymal subtype was shown to have re-
markably lower rates of non-enhanced tissue compared 
to other tumour subtypes, suggesting distinct growth 
properties of proneural and mesenchymal GBM. EG-
FR-mutant GBM were found to be significantly larger, 
whereas TP53 mutant GBM were smaller in FLAIR im-
ages than the wild type. The proportion of contrast-en-
hanced tumour and the length of the tumour major 
axis (based on FLAIR) were both significantly associat-
ed with poor survival. Overall survival was shown not 
to be associated with the percentage of necrosis, pro-
portion of oedema, part of non-enhanced tumour, or 
length of the lesion’s minor axis. 

Colen et al. [14] analysed a total of 104 treatment-na-
ive GBM patients with available gene expression results. 
A group of neuroradiologists reported certain invasion 
type imaging features using the VASARI set. These fea-
tures covered deep white matter tract (DWMT) involve-
ment, ependymal enhancement, pial enhancement, en-
hancing tumour crossing the midline, non-enhancing 
tumour crossing the midline, tumour extension into 
cortex, definition of the enhancing margin, definition 
of the non-enhancing tumour margin, proportion of 
oedema, presence and absence of cysts and haemor-
rhage [14]. Subsequently, patients were divided on 
the basis of presence or absence of the invasion MRI 
phenotypes. The results showed that patients (Class 
A) with a combination of deep white matter tracts and 
ependymal invasion had an important decline in sur-
vival. Analysis showed mitochondrial dysfunction to 
be the top canonical pathway in the patients with an 
aggressive GBM phenotype gene expression signature 
[14]. The MYC oncogene was estimated to be the prime 
activation regulator in Class A tumours. 

Barajas et al. [15]  scrutinised  the association of his-
topathological features  with imaging findings in 119 
tissue specimens acquired from 51 GBM patients. Con-
ventional, DWI and dynamic susceptibility contrast-en-

hanced (DSC) perfusion MRI for each tissue sample lo-
cation were differentiated to histopathologic traits (cell 
density, tumour score, proliferation, architectural dis-
ruption, hypoxia and microvascular hyperplasia). The 
tumour samples from the contrast enhancing regions 
had a higher tumour score, cellular density, prolifer-
ation and architectural disruption than the non-en-
hancing regions [15]. The apparent diffusion coefficient 
(ADC) was inversely correlated with the tumour score, 
the proliferation rate and the architectural disruption, 
whilst the fractional anisotropy (FA) was positively cor-
related with delicate microvasculature as well as archi-
tectural disruption. Low measures of tumour ADC were 
linked to more aggressive histological findings and the 
relative cerebral blood volume (rCBV) had a positive 
correlation with composite tumour score, proliferation 
rate, total microvasculature, necrosis and tumour cell 
number per high-power field. One possible limitation of 
this study is any unavoidable mis-registration between 
biopsy area and MR images, due to the intraoperative 
brain shift. Nonetheless, this study sheds light into the 
relation between histopathologic features of GBM and 
multiparametric MRI tumour findings.

Hu et al. [16] explored the possibility of the use of  
multiparametric MRI and texture analysis to indicate 
regional genetic diversity through MRI-enhancing and 
non-enhancing tumour fragments.  The aim was to as-
sess the territorial intratumoural heterogeneity of ge-
netic profiles as reported through various stereotactic 
biopsies within a single tumour. A strong connection 
between regional EGFR status and rCBV was detected.

Cho et al. [17] deployed radiogenomics profiling to 
establish MRI-associated immune cell markers in GBM: 
258 patients with an initial diagnosis of GBM were re-
cruited. Fourteen immune cell markers were chosen 
for RNA-level analysis. Quantitative parameters from 
FLAIR, contrast-enhanced T1-w, DSC and DWI data-
sets were used. CD68, CSF1R, CD33 and CD4 levels were 
highly positively related with normalised rCBV values, 
while CD3e and CD49d showed a significantly negative 
correlation with ADC values. In addition, CD49d came 
out to be an independent element for PFS of GBM pa-
tients. This radiogenomics outline unveils the correla-
tion between immune cell markers, CBV and ADC values 
and highlights the role of ADC as prognostic biomarker.

The differentiation between pseudoprogression (PsP) 
and true tumour progression (TTP) in GBM is a chal-

A systematic review on the current radiogenomics studies in glioblastomas, p. 32-44
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lenging task and Qian et al. [18] sought for possible ra-
diogenomic biomarkers related to PsP and TTP  inves-
tigating clinical records, longitudinal imaging features 
and genomics. A series of morphological features were 
extracted from the contrast-enhanced and necrotic 
regions on the contrast-enhanced T1-weighted flu-
id-attenuated inversion recovery (FLAIR). Thirty-three 
possible genes were chosen based on their connection 
to the imaging features, reflecting their relation to PsP 
and TTP. This study provided the first substantial evi-
dence that IRF9 and XRCC1 genes can serve as the po-
tential biomarkers for the development of PsP and TTP.

Gevaert et al. [19] derived various quantitative im-
aging features of GBM lesions to create radiogenomic 
maps associating these features with molecular data 
from 55 patients with GBM using the TCGA/TCIA da-
tabase. Eighteen image features were included in the 
study and were analysed in more detail for the three 
types of Regions of interest (ROIs). ROIs corresponding 
to enhancing necrotic portions of tumour and peritu-
moural oedema were drawn, and quantitative image 
features were derived from these ROIs. Three enhance-
ment features were significantly correlated with sur-
vival, 77 significant correlations were found between 
robust quantitative features and the VASARI feature 
set, and seven image features were weakly correlated 
with molecular subgroups [19]. The result was the cre-
ation of a radiogenomics map to link images to gene 
modules and presents a promising complementary 
strategy toward non-invasive management of GBM.

Liu et al. [20] sought to examine the correlation be-
tween DSC MR perfusion parameters and genomic 
biomarkers of GBM with regards to their prognostic 
value. The mean and maximal rCBV ratio of both the 
peri-enhancing tumour region and enhancing tumour, 
the Ki-67 labelling index, mammalian target of rapa-
mycin (mTOR) activation, epidermal growth factor re-
ceptor (EGFR)  amplification, isocitrate dehydrogenase 
mutation and TP53 were collectively assessed [20]. A 
major correlation between maximum rCBV and mTOR 
was detected, while the peri-tumoural rCBV showed 
major connection to mTOR after correction for gender 
and EGFR status. Finally, age and peri-tumoural rCBV 
were found to be the two strongest predictors of over-
all survival. Overall and importantly, this study showed 
that haemodynamic abnormalities of GBM were asso-
ciated with genomics activation status of mTOR-EGFR 

pathway however the radiogenomics associations were 
different in enhancing and peri-enhancing area of the 
examined GBM. The peri-tumoural rCBV had better 
prognostic value than genomic biomarkers alone.

Ellingson et al. [21] examined the correlation be-
tween postoperative residual enhancing tumour vol-
ume, genes expression and OS. Postsurgical, residual 
enhancing disease was quantified and multivariate 
egression models were used to determine the influence 
of clinical variables, O6-methylguanine-DNA methyl-
transferase (MGMT) status, and residual tumour vol-
ume on OS [21]. Researchers came to the important 
conclusion that postoperative tumour volume is an 
anticipating aspect for OS, irrespective of the type of 
therapy, age and MGMT promoter methylation status 
with crucial negative impact on the survival of patients 
with newly diagnosed GBM. 

Kickingereder et al. [22] aimed to assess the link 
between multiparametric and multiregional imaging 
traits with major molecular features. Results however 
showed no evidence of tumour location preference for 
any of the examined molecular parameters. Univariate 
imaging parameter associations were established for 
EGFR amplification and CDKN2A loss, with both demon-
strating increased rCBV and rCBF values [22]. The au-
thors found correlations between MR characteristics 
and molecular qualities, but the strength of the corre-
lations was not sufficient for utilisation of optimised 
learning classification algorithms for prognosis of mo-
lecular characteristics in patients with GBM.

Hong et al. [23] examined the relationship between 
MRI modalities and important genomic profiles in 
GBM. Qualitative and quantitative imaging character-
istics such as volumetrics and histogram analysis from 
rCBV and ADC were assessed on the basis of T2-w and 
contrast-enhanced T1-w images. The imaging frame-
work of variable genetic profile categories were bal-
anced, and regression analysis were used for marking 
imaging-molecular correlations. The IDH mutation 
subgroup had a larger T2-w volume and a higher vol-
ume ratio between T2-w and contrast-enhanced T1-w 
images than the IDH-wild type group. Higher mean 
ADC values were seen in IDH mutant tumours. Tumours 
with ATRX-loss showed higher 5th percentile ADC than 
the IDH-wild type, no ATRX-loss counterparts. PFS was 
the longest in the IDH mutation group, followed by the 
IDH-wild type, ATRX-loss groups [23]. Apart from the 
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retrospective design of this study, possible bias might 
be introduced by obtaining data from different MR 
scanners, incomplete genetic data for some of the pa-
tients and the non-inclusion of genetic factors that are 
known to affect the prognosis of GBM patients such as 
EGFR expression and PTEN. 

Zinn et al. [24] attempted to demonstrate association 
between gene expression variability status and MRI-ex-
tracted radiomics. Radiogenomic forecast and affirma-
tion were completed using the Cancer Genome Atlas and 
Repository of Molecular Brain Neoplasia Data GBM pa-
tients and orthotopic xenografts. Tumour phenotypes 
were disjointed and radiomic features were derived by 
the use of developed radiogenomic sequencing conduit. 
Patients and animals were separated based on periostin 
(POSTN) expression levels. Radiomics were applied to 
anticipate POSTN expression levels in patient, mouse 
and interspecies. The brain-tissue focused normali-
sation and patient-specific normalisation are unique 
to this study, providing comparable cross-platform, 
cross-institution radiomic features [24]. POSTN expres-
sion levels were not correlated to any qualitative or 
volumetric MRI framework. Radiomic traits undoubt-
edly anticipated POSTN expression status in patients. 
However, limitations in this study existed and were: (a) 
no prospective validation using spatially matched im-
age-guided brain tumour biopsies in patients and ani-
mal models and (b) the voxel size of the human MRI is 
larger compared to the xenograft MRI.

Demerath et al. [25] aimed to determine perfusion, 
diffusion and chemical shift imaging (spectroscopy) 
biomarkers in GBM and to associate them with genet-
ically decided patterns of structural MRI. Some of the 
results showed that rCBV in comparison to peri-tu-
moural FLAIR hyperintensity was found to be higher in 
infiltration than in oedema. Moreover, axial diffusivity 
alongside peri-tumoural FLAIR hyperintensity was low-
er in severe than in mild mass effect. Myo-inositol was 
positively correlated with Ki-67 in contrast-enhancing 
tumour. Therefore, alterations in rCBV and axial dif-
fusivity could be further examined as to what extend 
they are connected to angiogenesis and activation of 
proliferation genes. This pilot study suffered however 
of limited genetic information (only the IDH1-R132H 
mutation state was available for all patients), retro-
spective design, small population and high variability 
in ROIs placement. 

Smedley and Hsu [26] utilised machine learning to 
outline gene expression phenotypes and morphology in 
pre-operative MRI of GBM patients. An autoencoder was 
trained in 528 patient datasets, each of them with 12042 
gene expressions. The autoencoder's weights were used 
to initialise a supervised deep neural network. This di-
rected application was trained in 109 patients with 
both genetic and MR information. Twenty morphologi-
cal image traits were extracted for every patient, from 
contrast-enhancing and peri-tumoural oedema. Results 
showed that the neural network had decreased errors 
in anticipating GBM phenotypes indicating that neural 
networks may have the ability to identify a variety of 
predictive radiogenomic relationships than pairwise 
or linear methods. A major limitation of this work was 
the sample size as well as the fact that the authors did 
not assess whether pretraining with an autoencoder 
was better than other types of dimensionality reduc-
tion methods (i.e. principal component analysis or gene 
module creation).

Discussion
Our review suggests that despite ongoing advances 
in multimodal imaging technologies involving novel 
agents and powerful protocols or computer-aided tools, 
there is a gap between imaging information and the 
underlying molecular and genetic mechanisms of GMB. 
This information gap has both clinical and socio-eco-
nomic consequences since in many cases only imaging 
information is available rendering decisions such as 
the administration of expensive treatments hard and 
risking under- or overtreatment. Considering the large 
number of scanners and the huge volume of imaging 
examinations taken each year, one can easily under-
stand the enormous socioeconomic benefit for patients 
if molecular/genetic information could be inferred di-
rectly from medical image analysis. This would require 
medical imaging information to be correlated with 
molecular/genetic characteristics of disease allowing a 
more precise diagnosis, therapy planning and disease 
monitoring. 

To address this challenge of transferring imaging 
data into prognostic information, the emerging field of 
radiogenomics proposes a data analysis framework for 
extraction and analysis of multidimensional multipar-
ametric medical image features for optimising the di-
agnosis and prognosis of disease. As such, radiogenom-
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ics allows access to non-intuitive molecular or genetic 
information hidden in the images such as CT, PET and 
MRI that can be analysed with methods borrowed from 
data science. Within radiogeneomics two branches of 
research are emerging. Firstly, correlation analysis on 
the imaging and genomic features can give insight on 
their association. Secondly, and higher-order statisti-
cal analysis (e.g. via tailored optimised learning algo-
rithms) can predict clinical outcomes based on a com-
bination of radio-genomic features by “learning” from 
the complementary information they give. 

There are abundant advanced and emerging imaging 
biomarkers in brain utilising the full wealth of informa-
tion that MRI can offer and the current evidence shows 
that linked imaging-genomics maps offer non-invasive 
GBM molecular profiling by means of correlation be-
tween MRI biomarkers (derived from anatomical and 
functional images) and a rather wide range of genes 
expression. There have been some attempts to corre-
late progression-free and overall survival with imaging 
biomarkers or surrogates of genotypes but these works 
have been validated in small patient populations. The 
major shortcoming in the existing literature is the lack 
of large-scale studies that use radiomics or radiog-
enomics  and therefore it is difficult to establish the 
role of radiogenomics in clinical patient management 
and to exemplify these exciting developments and op-
portunities in, and the promising future of, personal-
ised cancer care. 

It is spearheaded by various groups that the rela-
tionship of quantitative imaging features with genetic 
data, and the extrapolation of prognostic and predic-
tive data from clinical imaging, will allow radiologists 
to potentially diagnose and stratify patients for treat-
ment based upon imaging features alone. Furthermore, 
serial monitoring of radiogenomics/radiomics-derived 
biomarkers will better allow clinicians to monitor dis-
ease recurrence and treatment response, while help-
ing to tailor targeted-therapies to the ever-evolving 
tumour genome. These views have been at the level of 
feasibility studies and there is currently not any Level 
1-2 evidence of a clinically applicable value of radiog-
enomics in selecting or tailoring patient treatment. The 
management plan for GBM still remains largely based 
on the tumour location, patient’s age, available mul-
ti-parametric MRI or PET to map more accurately the 
tumour extent, neurosurgical estimation of complete 

or near-total resection, available second-line treatment 
regimes and any possible salvage surgery.

We acknowledge that, with a wide array of multi-
modal multiscale imaging features provided from the 
radiogenomics framework, the integration of this het-
erogeneous high-dimensional information and its di-
mensionality reduction into statistically relevant sub-
groups are one of the major challenges and the heart of 
the analysis framework. Different data streams includ-
ing quantitative imaging data and relative biomarkers 
from such as texture, shape, histograms and wavelets 
have been represented in a unified framework and dif-
ferences in scale and dimensionality have been sought 
to be addressed. There are major benefits to studying 
multiple layers of a system and on multiscale dimen-
sions using the various functional “omics” methods, but 
to obtain maximum utility, the generated data need to 
be carefully integrated. To reduce “curse of dimension-
ality” as machine learning models are in general prone 
to overfitting problems, radiomics and deep features, 
there is no reference standard for the continuously 
evolving machine-learning field and hence no solid 
evidence on synthesising these cutting-edge “-omics” 
methodologies has been generated. The different data 
syntheses included fragmented imaging and genomic 
data analysis with subsequent correlation with sur-
vival rates. The method is based on the attempt to de-
tect all pairwise correlations in a few sets of features, 
which remain significant, but one could argue that the 
link between imaging feature and genetic information 
was forced through biased selection or the link to sur-
vival, and not that the genetic marker is a predictor of 
the imaging features. Another attempt was to use the 
molecular genetic data to extract information for pre-
defined locations in the genome. These are then the 
target features to be predicted from the imaging infor-
mation. Each molecular marker is here considered in-
dependently, missing possible intermolecular correla-
tions. Moreover, the reported machine-learning-based 
performance measures are based on 10-fold cross-val-
idation rather than nested cross-validation, the latter 
being considered as less-biased and more powerful. In 
future, deep learning that provides an unprecedented 
leap in algorithmic performance by implicitly learning 
relevant features directly from data should be part of 
integrated radiogenomics projects. It is hence obvious 
that the research frameworks in radiogenomics are 
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definitely not trivial and require teamwork from stake-
holders of medical and engineering backgrounds to 
avoid repeating mistakes made in one field in another 
field. 

Last but not least, the efficient integration of “omics” 
data and platform outputs via the concurrent employ-
ment of bioinformatics should provide a deeper under-
standing of multilevel connections including gene-gene 
and gene-environment interactions involved in disease 
development and evolution. The next decade will see 
the translation of these tools and approaches into pre-
dictive and preventive “systems medicine”. Discovery 
of new combined structural/metabolic imaging and 
(epi)-genomics status biomarkers may contribute to a 
better understanding of pathological pathways that in 
turn could be translated into diagnostic and therapy 
monitoring clinical tools for application to personalised 
medicine, and potentially to the elucidation of new drug 
targets after group analysis of tumour subpopulations. 

The existing work has eluded at integrating mul-
ti-parametric MRI radiomics with genome-wide meth-
ylation supported by machine learning algorithms, 
as a combination of methods for improved GBM and 
brain tumours prognosis. We encourage such com-
bining of radiomic and genetic (i.e. radiogenomic) 
data with optimised learning algorithms to “mine” a 
collection of features emerging from these complex 
datasets and via hierarchical clustering of the data 
(e.g. Fig. 5) seek patterns within them. The emerg-
ing patterns as outcomes from the machine learning 
framework can be used for the purposes of explain-
ing different behaviours and determining novel bio-
markers (exploratory analysis), stratifying different 
GBMs and brain tumours in general (classification 
analysis) or to evaluate correlations between differ-
ent prognostic variables (regression analysis). All of 
these three aspects have not been explored enough to 
date. Therefore, there is immense potential in these 

Fig. 5. Heatmap with dendrograms and hierarchical clustering of radiomic and genetic features. It was generated using the clus-
tergram command in Matlab and a publicly available data from the Matlab library. The purpose is to illustrate how a combina-
tion of radiomic features (as columns) and genetic features (as rows) can be combined to give clusters of data with either posi-
tive outcome (in this graph red) or negative outcome (in this graph green). The classification of the different clusters is done via 
supervised machine learning. 
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frameworks to be a diagnostic and prognostic tool and 
its use needs to be discussed more and incorporated 
within radiological journals. However, since the core 
of radiogenomics is extensive data science, and spe-
cifically using complicated computer simulations, it is 
important that this is user-friendly and achieved in a 
way that it showcases clinical usefulness.

Conclusion
Radiogenomics, an amalgam of genomics and quantita-
tive medical imaging data, provide a continuously evolv-
ing unique, ground-breaking, non-invasive technique 
able to capture certain tumour characteristics that can 
help the non-invasive staging and give prognostic and 
predictive information. The current research in radiog-
enomics in GBM seeks mostly to establish diagnostic 
correlations between MRI-derived metrics and genes 
expression profiles.  Most of the findings reviewed here 
have demonstrated consistent beneficial outcomes from 
the entry of radiogenomics in neurooncology but there 
is still an inadequate number of studies in this area that 
combine engineering/bioinformatics approaches and 
radiogenomic datasets. Thus, despite the high-end rep-

utation and peculiarity of this topic the method is not 
“prime-time” for clinical patient management, remain-
ing essentially a research tool that necessitates exten-
sive validation. Last but not least, many radiogenomics 
studies have been of hypothesis-generating nature and 
diligent verification in independent cohorts has been 
lacking. It may therefore be advantageous to investigate 
furthermore the effects of radiogenomics in the charac-
terisation and management of GBM as well as to point 
out the clinical validity and utility of any newly identi-
fied multiparametric MRI surrogate biomarkers. Radiog-
enomics have the power to expand radiology from a di-
agnostic and prognostic science to a discipline helping in 
elucidating new genetic pathways, establishing the value 
of them in precision medicine. R
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